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Thermodynamic and Transport Properties of
Hydrogen and Deuterium Fluids Within
Atom�Atom Approximation1

E. S. Yakub2

Computer simulation results for highly compressed molecular hydrogen and
deuterium fluids at pressures up to 100 GPa are presented. Nonempirical atom�
atom approximation for nonrigid molecules was used for description of intra-
and intermolecular interactions. Quantum corrections are included within the
Feynman variational approach. Pressure, energy, isothermal compressibility,
thermal expansion, heat capacities, and speed of sound, as well as transport
properties of hydrogen and deuterium fluids at elevated temperatures and high
densities, are computed using appropriate computer simulation procedures.
Predictions of self-diffusion, shear viscosity, and thermal conductivity of shock-
compressed deuterium and hydrogen fluids are presented.
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1. INTRODUCTION

The structure and thermodynamic and transport properties of hydrogen
isotopes in the condensed phase have been studied intensively for many
years. A rich body of experimental material in the cryogenic [1] as well
as in high-temperature [2, 15] regions has been accumulated. At high
pressures the most important experimental results have been obtained in
the solid phase by the diamond-anvil method [3].

Fluid hydrogen isotopes at intermediate temperatures remain much
less investigated. The existing published data have yielded the equation of
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state for the solid state [5] and for the fluid phase of normal hydrogen at
temperatures up to 500 K and pressures up to 2 GPa [4]. Between the
high-temperature and high-pressure dynamic shock-compression data and
the low-temperature limit, no experimental studies have been performed.
The transport properties of hydrogen or deuterium fluids in this region of
high density and elevated temperatures are almost unknown.

Since it is quite difficult to do an experiment here, it is of particular
importance to undertake a theoretical prediction of the properties of highly
compressed fluid hydrogen. However, there is an extremely restricted
choice of nonempirical methods for predicting the properties of such dense
systems. Methods based on the direct quantum-mechanical computer simu-
lation, e.g., the path-integral Monte Carlo (PIMC) method [6], are very
demanding of computational resources and have not yet attained the
necessary accuracy.

There are certain difficulties in applying to hydrogen the well-developed
methods of the theory of liquids, which make use of the model of rigid,
impermeable molecules. The absence of closed atomic electronic shells
makes hydrogen extremely compressible and stable at the same time in the
condensed phase. The softness of the intermolecular repulsion in hydrogen
becomes very important at high densities. It is just what makes hydrogen
different from many other substances, and therefore, the well-known and
useful molecular models such as hard spheres and dumbbells could not be
applied to hydrogen without essential modification.

The difficulties facing the theoretical prediction of the properties of
highly compressed hydrogen are also due to the appreciable quantum
effects [5]. Nonrigidity effects, which play an important role in highly
compressed fluid hydrogen at high temperatures [7, 9], remain substantial
at intermediate temperatures as well, especially near the line of crystalliza-
tion, where the density of the fluid is high. In this region, one cannot also
neglect quantum effects, particularly for the light isotopes of hydrogen. The
goal of the present study is to investigate the possibility of using the
approximation based on atom�atom potentials (AAP) [9] to predict the
behavior of thermophysical properties of dense hydrogen at intermediate
temperatures and high densities.

2. AB INITIO ATOM�ATOM POTENTIALS

In the AAP approximation [7, 9], the energy of interaction of hydrogen
molecules is expressed in terms of the interaction energy of individual pairs
of atoms. Two hydrogen atoms interact differently depending on their total
spin. In the singlet ground state the atoms form an H2 molecule��a bound
17 state with a well depth of about 4.75 eV and a bond length of 0.74 A1 .
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In the triplet exited state 37, the curve of the interaction energy does not
have a minimum (except for a small dispersion well at a distance greater
than 3 A1 ).

In the AAP approximation, the intermolecular interaction energy can
be expressed relatively simply in terms of the interaction energy of the
atoms within the molecule. This approximation is based on the Bohm�
Ahlrichs theorem, which was proved by those authors in Ref. 8 in the
Hartree�Fock approximation, in which the molecular orbitals are repre-
sented by a linear combination of atomic orbitals (LCAO MO). According
to the theorem, the energy of the nonvalent interaction of two atoms (i.e.,
the interaction energy of two atoms belonging to different molecules with
closed electronic shells) is equal to the weighted average (i.e., with allow-
ance for the degeneracy with respect to projections of the spin and orbital
angular momenta) of the interaction energy of two free atoms calculated in
this same approximation.

According to the theorem, the nonvalent interaction potential ,(r) of
hydrogen atoms can be calculated as a linear combination of the singlet
and triplet potentials, with weights proportional to the multiplicities of
these states:

,(r)= 1
4U( 17 | r)+ 3

4U( 37 | r) (1)

Here U(17 | r) is the interaction energy of two atoms in the 17 ground
state (with antiparallel spins); U( 37 | r) is the interaction energy of atoms
in the 37 exited state (with parallel spins).

Within the AAP approximation the total energy of two H2 molecules
found in their ground electronic states consists of intra- and intermolecular
contributions:

U2=U( 17 | R12)+U( 17 | R34)+,(r13)+,(r14)+,(r23)+,(r24) (2)

The indices 1 and 2 refer to the atoms bound together in the first molecule,
while 3 and 4 refer to the atoms bound in the second molecule. Here and
below Rij=R12 , R34 ,... are the intramolecular interatomic distances (the
instantaneous lengths of the chemical bonds in the molecules), while rij=
r13 , r14 ,... denote the instantaneous distances between atoms of different
molecules (intermolecular distances).

For N atoms (N�2 molecules) the generalization of Eq. (2) is expressed
as

UN= :
intra

U( 17 | Rij )+ :
inter

,(rij ) (3)
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The first sum in Eq. (3) is over the intramolecular interactions of all N�2
molecules, and the second sum is over all the N(N&1)�2 pairs of atoms
belonging to different molecules. Equation (3) is applicable to any spatial
distribution of atomic centers if an additional rule for the selection of
bonded atomic pairs (chemical bonds localization) is adopted. We applied
the following algorithm [9]. The first pair at a given specific configuration
of N atoms is taken to be that which has the shortest interatomic separa-
tion. Excluding these two atoms, the next pair is taken to be that having
the shortest interatomic distance among the remaining N&2 atoms, etc.,
until all the atoms have been exhausted.

We applied the following analytical approximation for the ground 17
state [9]:

U(17 | R)=De[exp(&2x)&2 exp(&x)&ax3(1&bx) exp(&cx)] (4)

where x=1.4403(r�re&1), re=0.74126 A1 , De �k=55,088 K, a=0.1156,
b=1.0215, and c=1.72. Equation (4) gives an excellent approximation of
the 17+

g -curve within a wide range of distances (0.3 to 5 A1 ). The nonvalent
interaction potential ,(r) was represented in the approximation proposed
by Saumon and Chabrier [13]:

,(r)==[# exp[&2s1(r&r*)]&(1+#) exp[&s2(r&r*)]] (5)

The parameters appearing in Eq. (5), r*=3.2909 A1 , ==1.74_10&3 eV,
#=0.4615, s1=1.6367 A1 &1, and s2=1.2041 A1 &1, were obtained in Ref. 13
on the basis of the well-known variational calculations of Kolos and
Wolniewitz [10] for the H2 molecule. Equation (5) also gives a very
accurate description of the potential from Eq. (1) over a wide interval of
distances (from 0.5 to 3.5 A1 ), including the region of strong repulsion at
short distances and the region of weak dispersional attraction at large
distances.

Thus, the AAP approximation, Eqs. (1)�(3), with the potentials in
Eqs. (4) and (5) permits a quite simple determination of the potential
surface of the ground state of a system consisting of an arbitrary number
of hydrogen molecules. We note that this approximation does not contain
any adjustable parameters found from the experimental data, but uses only
the pair potentials U(17 | R) and U(37 | R) obtained from ab initio calcula-
tions [10].

A comparison of the predictions of the AAP approximation with the
results of direct quantum-mechanical calculations of the H2�H2 interaction
energy and with the results of experiments on the scattering of molecular
beams has shown [7] that this approximation gives an entirely satisfactory
description of the short-range repulsion of the molecules but that the
molecular attraction at large distances is overestimated somewhat [12]. At
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large intermolecular distances, the AAP approximation does not recover
also the asymptotic behavior of the orientational part of the intermolecular
potential, in particular, that of its quadrupole�quadrupole component. This
shortcoming, which is important at relatively low densities, can also be
important in the description of some phase transitions in solid hydrogen
[5]. At the same time, at high pressures in the isotropic phase, where the
main role is played by the short-range repulsive forces, this aspect of the
AAP approximation plays a secondary role.

3. QUANTUM CORRECTIONS

For predicting the thermodynamic behavior of dense deuterium and,
especially, hydrogen at lower temperatures on the basis of the AAP
approximation, we modified this approach to incorporate quantum-
mechanical effects, which play a governing role in the behavior of these
light molecules at low temperatures. We adopted [12] the approach
proposed by Feynman, which is based on his variational procedure for the
free energy [11].

In this approach the free energy of a quantum-mechanical particle in
an external field can be calculated approximately by a classical method if
its potential energy V(r) is replaced by a certain effective potential given by

U� (r, T )=
1

- ? |
+�

&�
V(r+*t) exp(&t2) dt (6)

The parameter

*=h�- 24?mkT (7)

plays the role of the quantum-mechanical wavelength associated with the
given particle; k is Boltzmann's constant.

In the simplest cases, the quantum corrections to the potential within
the approximation in Eq. (6) are easily calculated explicitly. As was shown
in Ref. 12, considering quantum effects in the framework of the Feynman
approach reduces simply to some increase in the effective interatomic repul-
sion. A rough estimate of the possible influence of these effects on the repul-
sion of the atoms was made by taking into account that the parameter b
is close to 2 (a.u.)&1 for many atoms [7]. For example, for deuterium at
T=500 K the increase in the repulsion is only about 2.50, but for
hydrogen at T=200 K it is already about 200.

As for the intramolecular vibrations, their quantum character is mani-
fested at much higher temperatures, so that a quantum correction becomes
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comparable to the heat capacity itself at temperatures below 1000 K. In
view of this (while remaining formally within the framework of the Feynman
approach), we replaced the first-order quantum correction to intramolecular
energy with the exact expression for a harmonic oscillator [12]. At high
temperatures, it goes over to the original Feynman approach, and at low
temperatures, it gives the exact expression for the harmonic-oscillator con-
tribution to the free energy and the other thermodynamic properties.

Thus one can assume that in the investigated temperature interval,
taking quantum effects into account in the intermolecular interaction can
be done at the level of a correction to the intermolecular potential, and the
Feynman variational approach [11] can be completely applicable to highly
compressed hydrogen isotopes at temperatures higher than ambient.

4. MONTE CARLO SIMULATION

To predict the equilibrium properties of fluid hydrogen on the basis of
the AAP approximation with the quantum corrections introduced above,
we chose the method of Monte Carlo simulation. The calculation was done
in an NVT ensemble, with N hydrogen atoms placed in a rectangular cell
with periodic boundary conditions. The size of the cell was determined by
the specified density n=N�V, and the initial configuration corresponded to
a random distribution of molecules with bond lengths close to the equi-
librium bond length Re . Each step in the experiment included a random
choice of an individual atom, for which an attempt was made to move it
to a new position within a specified distance $. Discrimination of the steps
was carried out by the standard Metropolis method [14]. The value of $
was chosen such that about 400 of the steps were successful. It took about
1000 successful steps per atom to establish the equilibrium distribution.
Probable errors were estimated by standard statistical methods for a
significance level of 0.05.

The isothermal compressibility, the thermal pressure, and the isochoric
heat capacity CV were computed along with the pressure and the total
energy [12]. The calculations were performed for N=256 or N=500
atoms in the cell (128 and 250 H2 or D2 molecules in the cell, respectively).
The interatomic interaction potential was ``cut off '' at a distance rmax=5 A1 ;
this did not introduce any new errors of practical consequence.

5. MOLECULAR (ATOMIC) DYNAMICS PROCEDURE

To predict transport properties of dense fluid hydrogen, we examined
a classical system of N atoms forming nonrigid homonuclear diatomic
molecules. The method applied is similar to the well-known molecular
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dynamics method [16], except for the structure element chosen. We consider
the separate atoms in molecules within classical mechanics as elements of
structure and perform such atomic dynamics (AD) simulations at a constant
number of atoms N, volume V, and energy E (NVE simulation) with peri-
odic boundary conditions. Newton equations of atomic motion have been
integrated using the simplest three-point algorithm described by Norman et
al. [16]. Low masses of hydrogen isotopes along with high frequencies of
intramolecular vibrations and strong intermolecular forces require rela-
tively short time steps in numerical integration of equations of motion.

The time step 2t ranged from 10&4 ps (10&16 s) at relatively high tem-
peratures and densities up to 10&3 ps (10&15 s) at lower temperatures
and�or densities. Larger values of 2t speed up the equilibration (relaxation)
period in AD simulation but require special efforts for maintaining the
desired temperature. We applied correction factors to all velocities during
the relaxation period, preceding the main AD run to keep the temperature
close to the given value, and also checked the correspondence among
atomic velocities, center-of-mass velocities, and the Maxwell's distribution.

We used ``near-equilibrium'' atomic distributions generated in our
Monte Carlo simulations as starting atomic configurations, and after a
Maxwell equilibrium distribution was reached, we computed the self-diffu-
sion D, viscosity ', and thermal conductivity } and corresponding velocity,
shear stress, and heat-flux autocorrelation functions (ACF). We also calcu-
lated interatomic and intramolecular distribution functions. All results
presented below are averaged values over 1000 runs of 0.2 ps each. Every
set of runs took from 100 up to 200 h on a PC.

6. RESULTS AND DISCUSSION

6.1. Thermodynamic Functions

The results of MC computer simulation and the data obtained in Ref. 4
are in quite good agreement overall (see Table I). The only disagreement
is that the calculated pressure of the fluid hydrogen is somewhat (about
0.2 GPa) lower than experiment, even when the quantum corrections are
taken into account [12]. This is apparently due to the aforementioned
characteristic overestimate of the attraction of the molecules at large dis-
tances in the AAP approximation [9].

As expected, quantum effects particularly influence the isochoric heat
capacity over the entire investigated temperature interval. The corrections
to the thermal expansion coefficients and sound velocity are less important,
but even for them, the agreement with experiment is improved when these
corrections are taken into account. As the temperature increases, this
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Table I. Predicted (MC) and Experimental [4] Pressures P, Isochoric (CV) and Isobaric
(CP) Heat Capacities, Thermal Expansion :T , Isothermal Compressibility ;T ,

and Speed of Sound a of Fluid Hydrogen on the P=2 GPa Isobar at T=200 K
(V=11.17 cm3 } mol&1, *=0.20 A1 ), T=300 K (V=11.63 cm3 } mol&1, *=0.16 A1 ),

and T=500 K (V=12.53 cm3 } mol&1, *=0.13 A1 )

T (K)

200 300 500

MC [4] MC [4] MC [4] 2a

P (GPa) 1.81 2.00 1.75 2.00 1.72 2.00 0.01
CV �R 2.84 2.98 3.22 3.24 3.12 3.14 0.03
CP�R 3.26 3.62 3.62 3.64 3.56 3.68 0.05
:T (10&3 K&1) 0.48 0.42 0.37 0.39 0.32 0.36 0.03
;T (GPa&1) 0.15 0.15 0.15 0.16 0.18 0.18 0.02
a (km } s&1) 6.59 6.40 6.59 6.38 6.34 6.37 0.05

a Estimated statistical error of MC simulation; N=256.

agreement becomes better and better, although even for T=200 K the
predictions remain satisfactory. It is seen that the quantum corrections in
the given temperature interval give approximately the same contribution to
the pressure (of the order of 100) as the typical value of the intra-
molecular contribution [9] due to the nonrigidity of the hydrogen
molecule. Considering the quantum corrections is necessary in calculating
not only the heat capacity but also the thermal expansion, and it substan-
tially improves the agreement with experiment, especially at low tem-
peratures. For an approach that does not contain even one adjustable
parameter, the agreement can be considered completely satisfactory.

6.2. Transport Properties

In Table II, we present the predicted pressures and transport proper-
ties of fluid hydrogen at high densities and different temperatures. The
simulation results are also compared to shock-compression data [2, 15].

Self-diffusion coefficients D have been estimated in three ways: (a) from
the long-time slope of the mean-square atomic displacement, (b) as integrals
of the time-dependent atomic velocity ACF, and (c) as integrals of the time-
dependent molecular center-of-mass velocity ACF. All approaches give the
same result within estimated error limits. The computation of shear
viscosity and thermal conductivity is computationally much more time con-
suming (it requires many more runs in AD simulation). Unfortunately, we
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Table II. Predicted Pressures and Transport Coefficients of Hydrogen and Deuterium Fluids

Predicted

T V P PMC DAD 'AD }AD

Isotope Na (K) (cm3 } mol&1) (GPa) (GPa) (10&8m2 } s&1) (10&4Pa } s) (W } m&1 } K&1)

H2 256 300 11.63 2.0 [4] 1.72a 2.89\0.04 0.48\0.20 1.09\0.37

H2 256 500 12.53 2.0 [4] 1.75a 6.22\0.06 0.56\0.09 1.14\0.18
D2 500 2275 3.44 100 [2] 107.4 4.08\0.04 5.30\1.07 5.32\1.20

D2 256 2820 7.98 12.0 [15] 12.9 13.54\0.09 1.26\0.21 1.71\0.24

D2 500 3910 4.51 52.5 [15] 59.8 11.3 \0.1 2.9\0.7 3.4\0.8
D2 256 4660 7.02 22.6 [15] 22.2 20.1 \0.14 1.5\0.3 2.9\0.35

a Includes quantum corrections [16].

Fig. 1. Molecular (1) and atomic (2�4) normalized autocorrelation functions
of the compressed fluid hydrogen at a relatively low temperature, T=300 K
(P=2 GPa). The fine oscillation structure of the heat flux (thick line; 2), the
atomic shear stress (thin solid line; 3), and the velocity ACF (dotted line; 4) have
the same time period as the intramolecular vibration mode.
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are not aware of any measured or predicted values of transport coefficients
at shock-compression conditions with which to compare our predictions.
The estimated statistical error of the predicted shear viscosity and thermal
conductivity is still significant, but the more precise prediction is beyond
the power of AD simulation on available PCs and requires a high-perfor-
mance computer.

6.3. Velocity Autocorrelation Functions

In Figs. 1 and 2 we present the time-dependent atomic ACFs along
with the molecular center-of-mass (dotted line) velocity ACF at low and
high temperatures. There is a pronounced fine oscillation structure of the
atomic velocity ACF, while the time dependence of the molecular center-
of-mass velocity ACF is smooth and quite usual for simple liquids at high

Fig. 2. ACFs in hydrogen fluid at a high temperature, T=3910 K, and P=50
GPa fall away much faster, and their oscillation structure is less pronounced
than at low temperatures. The labels are the same as in Fig. 1.
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densities. The period of those oscillations is close to the period of intra-
molecular vibration [17]. It is clear that highly compressed molecular fluid,
composed from nonrigid molecules, will behave like a system of strongly
coupled oscillators. The ACF oscillations are much more pronounced at
higher densities and lower temperatures. The higher the temperature is, the
more damped the ACF oscillations are.

7. CONCLUSIONS

The predictions of the AAP approximation are in reasonable agree-
ment with existing experimental data both at moderate and at high tem-
peratures, in spite of the fact that the AAP potentials do not explicitly
contain contributions from the short-range multiparticle and long-range
electrostatic intermolecular forces and that the electronic excitation of the
molecules is not fully taken into account [7, 9].

Quantum corrections introduced to the AAP approximation [12]
provide the possibility to calculate the thermodynamic properties and
structure parameters of fluid hydrogen at high pressures, beyond the limits
of the experimentally investigated region.

The temperature and density dependence of self-diffusion in fluid
hydrogen predicted within the AAP approximation was examined in
Ref. 17. Self-diffusion coefficients demonstrate a very slow decrease with
compression, in contrast with predictions of the hard-sphere model. The
temperature dependence of D is gas-like (power law) rather than inverse-
exponential, typical for the activation mechanism of diffusion. Our simula-
tions have also shown that the time-dependent atomic autocorrelation
functions in diatomic fluids had a fine oscillation structure, more pronoun-
ced at lower temperatures and higher compressions.

Both the Enskog and the Frenkel approaches fail to describe the
simulated density and temperature dependence of self-diffusion coefficients
in dense fluid hydrogen (see Ref. 17 for details). It is not surprising because
the hydrogen interatomic repulsion, as mentioned above, is very soft. The
log(nD)&1�T dependence is far from linear, in contrast to Frenkel's activa-
tion theory. At the same time the slope of log(nD)&log(T ) dependence is
nearly constant [17] and changes with density from values close to 0.5
(corresponding to the known ideal-gas law) up to 1.5 and more. Unfor-
tunately, the uncertainty of our shear viscosity and thermal conductivity
predictions makes them inconclusive with respect to the suitability of exist-
ing theories for highly compressed hydrogen fluid.

Of course, a simple model such as AAP approximation cannot pretend
to complete a description of dense hydrogen. At least two important effects
have been omitted in the present calculations. First, using atom�atom
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models means that the effects of electronic polarizability and long-range
forces are not correctly treated. Second, we have ignored electronic excita-
tions, leading in the end to the metallization of hydrogen at higher densities
and to the dissociation at higher temperatures.

Although the AAP approximation does suffer from the list of short-
comings mentioned above, as a nonempirical approach this approximation
has its indisputable advantages and its own sphere of application. This
approach requires a minimum of initial information for predicting the
properties, makes it possible to describe the effects of molecular non-
rigidity, and can be useful for predicting not only the thermodynamic
behavior of molecular fluids at high pressures but also the diffusion,
viscosity, and other transport properties of compressed fluids.
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